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1. Introduction

Three dimensional (super-)gravity with negative cosmological constant has played an im-

portant role in the study of black holes in string theory [1 – 3]. The theories relevant for

string theory however are not theories of pure (super-)gravity but (super-)gravity coupled

to other matter fields containing higher derivative terms. In the absence of other matter

fields the higher derivative terms in the action can be removed by field redefinition and

the action may be reduced to the standard (super-)gravity action whose gravitational part

contains a sum of three terms, – the Einstein-Hilbert term, a cosmological constant term

and the Chern-Simons term [4, 5]. An argument based on AdS/CFT correspondence sug-

gests that even when matter fields are present one can carry out a consistent truncation

of the theory where only (super-)gravity is present, and action is again that of standard

(super-)gravity whose gravitational sector is given by the sum of three terms [6]. The main

ingredient of this argument was that in the dual two dimensional (super-)conformal field

theory living at the boundary of AdS3 any correlation function with one matter field and

arbitrary number of (super-)stress tensor vanishes, and furthermore the correlation func-

tions of the (super-)stress tensor are determined completely in terms of the central charge

and are independent of the matter content of the theory. One of the goals of the present

paper is to describe the consistent truncation procedure directly in the bulk theory without

any reference to AdS/CFT correspondence. A general analysis of consistent truncation to

supergravity theory in general dimensions can be found in [7 – 9].

Although our analysis is classical, it can in principle be applied to the full quantum

effective action.1 However in our analysis we shall have to assume that the initial action

is local, i.e is given by an integral of a local Lagrangian density that admits a derivative

expansion. Since in general the full quantum effective action can contain non-local terms,

1If the theory admits an AdS3 solution we can define the quantum effective action to be the one whose

classical boundary S-matrix reproduces correctly the full boundary S-matrix of the quantum theory.
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our analysis will not be directly applicable on these terms. In contrast the argument based

on AdS/CFT correspondence works for the full quantum corrected effective action.

After consistent truncation and field redefinition that brings the action to the standard

form, the parameters labelling the action are the cosmological constant and the coefficient

of the Chern-Simons term. Of them the Chern-Simons term does not change under the

field redefinition required to bring the action to the standard form but the cosmological

constant term is modified. In theories with extended supersymmetry the cosmological

constant can be determined from the coefficient of a gauge Chern-Simons terms [10] which

also does not get renormalized under the field redefinition; however in general we need to

determine the cosmological constant explicitly. We describe a simple algebraic procedure

for determining the cosmological constant of the final theory in terms of the parameters of

the original action.

Finally we apply our method to the analysis of the three dimensional gravity that

arises from the dimensional reduction on S2 of five dimensional supergravity with curvature

squared corrections [11] and calculate the cosmological constant of the final theory after

the field redefinition that brings the action to the standard form. In this case the theory

has a (0,4) supersymmetry and the expected value of the cosmological constant can be

found by relating it to the coefficient of a gauge Chern-Simons term [10, 12]. One can also

infer it from the results for the black hole entropy in these theories computed in [13 – 15].

The result of the explicit calculation agrees with these predictions.

2. Field redefinition of the bosonic fields

In this section we shall describe how the bosonic part of a (super-)gravity action coupled

to matter fields and containing higher derivative terms can be brought into the form of a

standard supergravity action via field redefinition and consistent truncation. We begin with

a three dimensional general coordinate invariant theory of gravity coupled to an arbitrary

set of matter fields. We denote by gµν the metric, by φ the set of all the scalar fields, by

Σ the set of all other tensor fields, by Rµν the Ricci tensor associated with the metric gµν
and by R the scalar curvature. At the level of two derivative terms, the action takes the

form:

S0 + Smatter , (2.1)

where

S0 =

∫
d3x

√−g (R + Λ0(φ)), (2.2)

and Smatter denotes the kinetic term for the matter fields. −Λ0(φ) represents the scalar

field potential. We have already carried out an appropriate redefinition of the metric to

remove a possible φ dependent function multiplying R in the Einstein-Hilbert term. If

Λ0(φ) has an extremum at φ = φ0 then this theory has a solution where φ is set equal

to φ0, all other tensor fields are set to zero, and the metric is given by that of an AdS3

space of size l0 =
√

2/Λ0(φ0) for Λ0(φ0) > 0 and a dS3 space of size l̄0 =
√

−2/Λ0(φ0) for

Λ0(φ0) < 0. In this case Λ0(φ0) corresponds to the negative of the cosmological constant.
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We shall now consider the effect of adding higher derivative terms. For this we shall

assume that these terms are small compared to the leading term, in the sense that the

length parameter ls that controls these terms is small compared to the length scale l0 over

which the leading order solution varies.2 We shall also assume that we can associate with

each higher derivative term in the Lagrangian density an index n that counts how many

powers of ls accompanies this term compared to the leading term. For example if the three

dimensional theory is obtained via a dimensional reduction of type IIB string theory on

K3×S1×S2×AdS3 with K3 and S1 having size of the order of string scale and S2 and AdS3

having large size, then α′ corrections as well as corrections coming from integrating out

the heavy modes associated with K3×S1 compactification will have index n > 0, whereas

all the terms associated with compactification of supergravity on S2 × AdS3 – including

the ones involving massive Kaluza-Klein modes — will have index 0. An efficient way to

keep track of the derivative expansion is to introduce a derivative counting parameter λ

and accompany a term of index n by a factor of λn. We shall carry out our analysis in a

power series expansion in λ even though at the end we shall set λ = 1.

Since in three dimension the Riemann tensor Rµνρσ can be expressed in terms of the

Ricci tensor, all the higher derivative terms can be expressed in terms of the Ricci tensor, its

covariant derivatives and covariant derivatives of the matter fields. We shall now reorganize

these terms as follows.We first note that under gµν → gµν + δgµν ,

S0 → S0 −
∫
d3x

√−g Pµνδgµν +O(δg2) , (2.3)

where

Pµν = Rµν −
1

2
(R + Λ0(φ))gµν . (2.4)

Defining

P ≡ Pµµ = −1

2
R− 3

2
Λ0(φ) (2.5)

(2.4) can be rewritten as

Rµν = Pµν − (P + Λ0(φ))gµν . (2.6)

We now eliminate the variables Rµν , R and their covariant derivatives in higher derivative

terms by Pµν , P and their covariant derivatives.

In this convention the most general action takes the form:3

S = S0 + λScs + S̃matter + λn Sn . (2.7)

2Often the three dimensional theory is obtained from dimensional reduction of a higher dimensional

theory on a compact space of size of order l0. In this case if we integrate out the Kaluza-Klein modes we

shall generate higher derivative terms which are not suppressed by powers of ls. To avoid this situation we

include all the Kaluza-Klein modes in the set Σ without integrating them out.
3During the process of replacing Rµν by the right hand side of (2.6) we may generate some terms of the

form
R

d3x
√−g f(φ). Since these cannot be absorbed into eSmatter or Sn, we need to absorb them into the

scalar field potential Λ0(φ) appearing inside S0. Thus Λ0(φ) needs to be determined in a self-consistent

manner. To any order in power series expansion in λ this can be done using an iterative procedure.
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S0 is given in (2.2). λScs is the gravitational Chern-Simons term

Scs = K

∫
d3xΩ(3)(Γ), Ω(3)(Γ) ≡ ǫµνρ

[
1

2
Γτµσ∂νΓ

σ
ρτ +

1

3
ΓτµσΓ

σ
νκΓ

κ
ρτ

]
, (2.8)

where K is a constant and Γµνρ denotes the Christoffel symbol. Note that we have included

a factor of λ in Scs since in string theory the gravitational Chern-Simons term typically

arises from α′ corrections. S̃matter denotes the matter terms (including the standard kinetic

terms) which are quadratic and higher order in Σ, derivatives of Σ and derivatives of φ.

λn Sn denotes all other terms, i.e. manifestly general coordinate invariant terms up to linear

order in Σ, ∂µφ and their derivatives, but not terms of the form
∫
d3x

√−g R f(φ) since

they can be included in S0. Most general higher derivative terms in the action will have

the form given in (2.7) with n = 1 but for later use we have allowed for the fact that

the higher derivative terms which cannot be included in S0, S̃matter or λScs may actually

begin their expansion at order λn. It is easy to see that Sn must contain least one power

of Pµν , since the Pµν independent terms which do not involve Σ, ∂µφ or their derivatives

can be absorbed into Λ0(φ) and Pµν independent terms which are linear in Σ, ∂µφ or

their derivatives either vanish or become quadratic in Σ, ∂µφ or their derivatives after

integration by parts and hence may be included in S̃matter. An alert reader may worry

about special cases where a symmetric rank 2 tensor Aµν has a coupling proportional to√−g f1(φ) gµνAµν or an antisymmetric rank three tensor Cµνρ has a coupling proportional

to f2(φ) ǫµνρCµνρ. We can however avoid these situations by expressing Aµν as Agµν +A′

µν

with A = gµνAµν/3, and A′

µν a traceless symmetric matrix, and Cµνρ as C(
√−g)ǫµνρ with

C = (
√−g)−1ǫµνρCµνρ/6, and treating A and C as scalar fields. In this case these terms

can be included in the scalar field potential Λ0(φ) appearing in S0. Thus Sn has the form

Sn =

∫
d3x

√−g PµνKµν(φ,Σ,∇ρ, gρσ , Pρσ , λ) . (2.9)

where Kµν is some combination of matter fields, Pµν and their covariant derivatives, and

can contain non-negative powers of λ.

Now consider a redefinition of the metric of the form

gµν → gµν + λnKµν (2.10)

Under this

S0 → S0 − λn
∫
d3x

√−g PµνKµν +O(λ2n) = S0 − λnSn +O(λ2n) , (2.11)

Scs → Scs +O(λn+1) , (2.12)

and

λn Sn → λn Sn +O(λ2n) . (2.13)

Thus

S0 + λScs + λnSn → S0 + λScs +O(λn+1) . (2.14)

Furthermore S̃matter remains quadratic in Σ, ∂µφ or their derivatives under this field redef-

inition. The order λn+1 term on the right hand side of (2.14) can now be regrouped into
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a term of the form
√−g f(φ) that can be absorbed into a redefinition of Λ0(φ), a term

quadratic in Σ and ∂φ that can be absorbed into S̃matter(φ) and a term containing at least

one power in Pµν . Thus the resulting action may be expressed as:

S = S′

0 + λScs + S̃′

matter + λn+1 Sn+1, (2.15)

where

S′

0 =

∫
d3x

√−g (R + Λ′

0(φ)), (2.16)

S̃′

matter contains terms which are quadratic and higher order in Σ and derivatives of φ, Σ

and

Sn+1 =

∫
d3x

√−gPµνK ′

µν(φ,Σ,∇ρ, gρσ , Pρσ , λ) (2.17)

for some K ′

µν . Thus the new action has the same form as our starting action with n replaced

by n+ 1. Repeating this process we can ensure that to any fixed order in an expansion in

λ, the action can be brought to the form:

S =

∫
d3x

√−g(R+ Λ(φ)) + λScs + S̃matter , (2.18)

for some choice of Λ(φ) and S̃matter.

Now suppose Λ(φ) has an extremum at φ = φ0. Introducing new fields ξ = φ− φ0 we

may express the action as

S =

∫
d3x

√−g(R + Λ(φ0)) + λScs + · · · , (2.19)

where · · · contain terms which are at least quadratic in ξ, Σ and their covariant derivatives.

We can now carry out a consistent truncation of the theory by setting ξ = 0, Σ = 0.

This leaves us with a purely gravitational action with Einstein-Hilbert term, cosmological

constant term and Chern-Simons term.

If the theory contains a 2-form field B with gauge invariance B → B + dΛ then we

can consider a slightly more general truncation where instead of setting B to zero we

set it to have a constant field strength C
√−g ǫµνρ for some constant C. Let B̃ denote the

fluctuation around this fixed background. Since C
√−g ǫµνρ is a general coordinate invariant

tensor, and since the Lagrangian density depends on B only through the combination

(dB)µνρ = C
√−g ǫµνρ+(dB̃)µνρ, it depends on (dB̃)µνρ in a manifestly general coordinate

invariant fashion. We can then proceed with our analysis as before, including B̃ in the list

of tensor fields Σ.

If instead of considering a theory of gravity we consider (extended) supergravity the-

ories, then the theory contains additional fields. In particular the additional bosonic fields

in the theory are gauge fields with Chern-Simons terms [16 – 20]. Thus in order to show

that a general higher derivative supersymmetric theory admits a consistent truncation to

a supergravity theory we need to show that higher derivative terms involving higher pow-

ers of gauge fields can be removed by field redefinition. This follows from the fact that

under Aµ → Aµ + δAµ the gauge Chern-Simons term changes by a term proportional to

– 5 –
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ǫµνρTr (FµνδAρ). Thus a term of the form λn
∫ √−g Tr (FµνL

µν) in the action may be

removed (up to order λ2n terms) by a shift of Aµ proportional to
√−g ǫµνρLνρ. Following

this procedure we can remove all terms involving the gauge fields other than the Chern-

Simons term to any order in λ.4 Once this has been done, one can then carry out the

field redefinition of the metric and the scalar fields as described earlier, and obtain a con-

sistent truncation to a theory of metric and gauge fields with gauge Chern-Simons terms,

Einstein-Hilbert term, cosmological constant term and gravitational Chern-Simons term.

Supersymmetry then relates the coefficient of the gauge and gravitational Chern-Simons

terms to the cosmological constant term.

So far our analysis has been restricted to terms in the action involving bosonic fields

only. In a supergravity theory we must also include the fermionic fields and argue that

higher derivative terms involving the fermions may be removed by field redefinition. We

shall return to this problem in section 4.

3. Algorithm for determining Λ(φ)

The analysis of the last section gives an algorithm for carrying out a field redefinition and

consistent truncation that gives a theory of pure (super-)gravity. However for any given

higher derivative action this is a complicated procedure and one would like to have a simpler

algorithm to determine the final truncated theory. Of the various parameters labelling the

final theory the coefficients of the Chern-Simons terms are easy to determine since they do

not get renormalized from their initial values. On the other hand the cosmological constant

term does get renormalized during the field redefinition. In this section we shall outline a

simple procedure for finding the exact Λ(φ) appearing in (2.18) without having to carry out

all the steps described in the last section. The cosmological constant of the final truncated

theory can then be found by determining the value of Λ(φ) at its extremum.

Suppose our initial action has the form

S =

∫
d3x

√−gL + λScs . (3.1)

In anticipation of the fact that the final truncation involves setting the scalars φ to constants

and other tensor fields Σ to 0, let us consider a theory of pure gravity obtained by setting

Σ to 0 and φ to some constant values in (3.1). Thus φ can now be regarded as a set of

external parameters labelling the action. We now consider a background

ds2 = −l2(1 + r2)dt2 + l2(1 + r2)−1dr2 + l2r2dϕ2 ,

φ = constant, Σ = 0 , (3.2)

4This assumes that all other terms in the action depend on the gauge field only through Fµν and not

explicitly Aµ, i.e. there are no other charged fields on the theory. This is not a restriction on the theory

since these charged fields, if present, can be set to zero in a consistent truncation scheme provided the

gauge symmetry is not spontaneously broken. In the latter case the would be Goldstone boson associated

with the symmetry breaking would mix with the gauge field via a two point coupling and we cannot have

a consistent truncation to pure supergravity.
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representing an AdS3 space of size l. If we define

F (l, φ) = l3L (3.3)

evaluated in the background (3.2), then the metric satisfies its equation of motion if l is

chosen to be at the extremum lext of F . Furthermore r F (lext, φ) denotes the value of
√−gL

evaluated at the solution. Note that the term in the equations of motion obtained from

the variation of the Chern-Simons term automatically vanishes for the AdS3 metric (3.2)

for any constant l.

Let us leave this result aside for a while and consider the form of the action obtained

after a field redefinition of the metric as described in section 2. After setting φ to a constant

and Σ to 0, the action (2.18) takes the form:

S =

∫
d3x

√−g(R+ Λ(φ)) + λScs . (3.4)

If we evaluate
√−g (R + Λ(φ)) for the AdS3 background (3.2), we get a new function

r H(l, φ) with

H(l, φ) = l3
[
− 6

l2
+ Λ(φ)

]
. (3.5)

Now since we have carried out a field redefinition of the metric but not of Σ or φ, we

expect F (l, φ) and H(l, φ) to be related by a redefinition of the parameter l for any fixed

φ.5 Hence the values of these functions at the extremum must be the same. Since the

extremum of H occurs at,

l̃ext =

√
2

Λ(φ)
, H(l̃ext, φ) = −

√
32

Λ(φ)
, (3.6)

we get, by setting the right hand side of (3.6) to F (lext, φ),

Λ(φ) =
32

F (lext, φ)2
(3.7)

provided F (lext, φ) is negative. This determines Λ(φ).

Eq. (3.7) might give the impression that this procedure always leads to a theory with

positive Λ, i.e. with a negative cosmological constant. This is however an artifact of the

fact that we have already assumed that the theory admits an AdS3 solution. It may so

happen that F (l, φ) defined in (3.3) has an extremum at an imaginary value of l and hence

F (l, φ) is imaginary at the extremum.6 This will give a negative Λ(φ) and hence a positive

cosmological constant. A better way to analyze this case is to consider a de Sitter metric

of the form

ds2 = −l̄2(1 − r2)dt2 + l̄2 (1 − r2)−1 dr2 + l̄2r2 dϕ2 (3.8)

5We are implicitly using the result that during the process of redefinition of the metric the terms arising

out of the variation of the Chern-Simons term vanishes when the metric has the form (3.2) and ∂µφ and Σ

are set to zero. This can be seen from the fact that in this case the field redefinition essentially rescales the

metric. Since Γµ

νρ remains unchanged under a rescaling of the metric and since the Chern-Simons term is

constructed entirely in terms of Γµ

νρ, it does not change under such a field redefinition.
6Note that the metric and hence L depends only on l2 and hence is real even when l is imaginary.
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instead of the anti-de Sitter metric given in (3.2), and define

F̄ (l̄, φ) = l̄3L , (3.9)

evaluated in this background with φ set to constants and Σ set to zero. On the other

hand (3.5) is now replaced by

H̄(l̄, φ) = l̄3
[

6

l̄2
+ Λ(φ)

]
. (3.10)

and the value of H̄(l̄, φ) at the extremum with respect to l̄ is given by
√

−32/Λ(φ). Equat-

ing this to the value of F̄ at its extremum we get:

Λ(φ) = − 32

F̄ (l̄ext, φ)2
(3.11)

provided F̄ (l̄ext, φ) is positive.

Finally we note that there is always a possibility that neither F (l, φ) nor F̄ (l̄, φ) has an

extremum for real values of l or l̄, or even if such extrema exist, the resulting function Λ(φ)

does not have an extremum as a function of φ. In this case the theory under consideration

does not admit an AdS3 or dS3 solution and we cannot carry out the consistent truncation

following the procedure described above.

4. Higher derivative terms involving the gravitino

In the last two sections we have described how via a field redefinition the bosonic part of the

supergravity action can be brought into the standard form. Once the bosonic part of the

action has been shown to coincide with that of the supergravity action one would expect

that supersymmetry will fix the fermionic part of the action uniquely (up to a possible field

redefinition involving the fermions) to be that of the standard supergravity action. In this

section we shall briefly discuss how such a result might be proven.

We begin with an action where the purely bosonic part has already been brought

into the standard form using the field redefinition described in section 2. At the onset

we shall assume that supersymmetry is unbroken at the extremum φ0 of Λ(φ); otherwise

we expect the gravitino to mix with the Goldstino and hence the matter and the gravity

multiplet will no longer be decoupled. This in turn requires Λ(φ0) to be positive since we

do not have unbroken supersymmetry in de Sitter space. If the theory has altogether N
supersymmetries then there are N gravitino fields ψiµ with 1 ≤ i ≤ N . In the supergravity

action of [16 – 21] the gravitino action has the form:

Sψ0 = −
∫
d3x ǫµνρψ̄iµDνψ

i
ρ , (4.1)

where

Dµψ
i
ν = ∂µψ

i
ν +

1

8
ωabµ[γ

a, γb]ψiν ±
√

Λ(φ0)

32
eaµγ

aψiν +Aaµ(T
a)ijψ

j
ν , (4.2)

– 8 –
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ωµab being the spin connection, eaµ the vielbeins, Aaµ the gauge fields and T a are the

generators of the representation of the gauge group in which the gravitinos transform.

The + (−) sign correspond to the gravitinoes associated with left (right) supersymmetries.

Under a general variation of the gravitino fields

δSψ0 = −
∫
d3x ǫµνρ

[
δψ̄iµDνψ

i
ρ + h.c.

]
(4.3)

leading to the gravitino equation of motion

Dνψ
i
ρ −Dρψ

i
ν = 0 . (4.4)

The supersymmetry transformation law of the gravitino fields takes the form

δsψ
i
µ = Dµ ǫ

i , (4.5)

where ǫi are the supersymmetry transformation parameters.

We shall now examine the possibility of adding higher derivative terms in the action

and also possibly in the supersymmetry transformation laws. Let us denote by η the set of

all the bosonic and fermionic fields coming from the matter sector with the scalars measured

relative to φ0 (i.e. the set η contains the shifted fields ξ introduced above (2.19)). A higher

derivative term in the action which is quadratic or higher order in η is harmless since we

can consistently truncate the theory by setting η = 0. Thus we need to worry about terms

which are at most linear in η or derivatives of η. We shall refer to these as the dangerous

terms since, if present, they will prevent us from consistently truncating the theory to the

one described by the standard supergravity action. As in section 2 we shall organise these

terms according to the power of the derivative counting parameter λ that they carry. Let us

suppose that the first dangerous higher derivative terms in the Lagrangian density appear

at order λk. Now any term that is proportional to the equation of motion of the metric, the

gauge fields or the gravitinos derived from the leading supergravity action can be absorbed

into a redefinition of these fields at the cost of generating higher order terms; thus we need to

look for terms which do not vanish identically when leading order supergravity equations of

motion are satisfied. Using this we can remove all the dangerous terms in the action which

contain any power of gauge field strength, the combination Rµν+Λ(φ)gµν , and commutators

of covariant derivatives. Thus the dangerous terms may be expressed as general coordinate

invariant and local Lorentz invariant combinations of the gravitino fields, their symmetrized

covariant derivatives and the metric. We now consider all the order λk dangerous terms

and organise them by their rank, — defined as the total power of ψµ and ψ̄µ contained in

that term. We begin with the terms of lowest rank, — call it m0. m0 cannot vanish since

we have already argued earlier that all the dangerous terms without the gravitino field can

be removed by field redefinition. (For this we need to include in the set Σ of section 2 all

the matter fermions as well.) For non-zero m0 the lowest order supersymmetry variation

of the gravitino described in (4.5) has the effect of producing a term of rank (m0 − 1),

constructed out of the gravitino fields, their symmetrized covariant derivatives, the metric,

and covariant derivatives of the supersymmetry transformation parameter. In order for

– 9 –
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supersymmetry to be preserved, such terms need to be cancelled by some other terms. The

terms arising from the supersymmetry variation of the bosons in the original rank m0 term

are of rank ≥ m0 and hence cannot cancel the rank (m0 − 1) term. Thus there are two

possibilities: 1) the rank (m0 − 1) terms arising from the variation of the gravitino cancel

among themselves after we integrate by parts and move all the derivatives from ǫ, ǭ to the

fields, possibly after modifying the supersymmetry transformation laws of the supergravity

fields, and 2) we can try to cancel these terms against terms coming from supersymmetry

variation of the bosons in a term of rank (m0 − 2). Of these the first possibility would

mean that the dangerous terms are invariant under the transformation (4.5) of the gravitino

alone up to terms which vanish by lowset order supergravity equations of motion.7 To see

if this is possible we first focus on the terms with maximum number of derivatives where

all the covariant derivatives have been replaced by ordinary derivatives in the order λk,

rank m0 term in the action. The net supersymmetry variation of these terms under the

supersymmetry transformation law (4.5) must vanish after using the lowest order gravitino

equations of motion (4.4) with Dµ replaced by ∂µ in (4.5) and (4.4), since this is the term in

δsS with maximum number of derivatives at this order. In this case the gravitino satisfying

its lowest order equations of motion has the form ψiµ = ∂µχ
i, ψ̄iµ = ∂µχ̄

i for some χi, χ̄i. Let

us evaluate the order λk, rank m0 term in the action in this background. By assumption

the result is not identically zero, — otherwise we could have removed these terms from

the action by a field redefinition of the gravitino field. Now for ψiµ = ∂µχ
i, ψ̄iµ = ∂µχ̄

i the

gauge transformation laws of the gravitino field take the form χi → χi + ǫi, χ̄i → χ̄i + ǭi.

Since ǫi and ǭi can be taken to be independent parameters we consider a situation where

only one of the ǫi is not zero. Invariance under supersymmetry transformation then tells

us that the term under consideration is invariant under χi → χi + ǫi for an arbitrary

function ǫi. In other words the term is independent of χi. Repeating this argument we

conclude that the term under consideration must be independent of all χi and χ̄i. Thus it

must vanish since it vanishes when we set all the χi and χ̄i to zero. This contradicts our

original assertion that the term does not vanish identically. This leads us to the conclusion

that the original order λk, rank m0 term in the action, with covariant derivatives replaced

by ordinary derivatives, must have been such that after suitable integration by parts and

commutation of the derivative operators it vanishes when the gravitino satisfies its lowest

order equation of motion.

How does the conclusion change when the ordinary derivatives are replaced by covari-

ant derivatives? Since we know that the term can be manipulated and shown to vanish

when covariant derivatives are replaced by ordinary derivatives, we can carry out the same

manipulation. The only possible extra terms which could arise must be proportional to the

commutators [Dµ,Dν ] since the covariant derivatives can be manipulated in the same man-

ner as the ordinary derivatives except for their commutators. However these commutators

can be reduced to terms with lower number of derivatives using the lowest order metric and

7The terms proportional to the lowest order equations of motion of the supergravity fields can be can-

celled by modifying the supersymmetry transformation laws of the supergravity fields, since the additional

variation of the lowest order supergravity action under the modified supersymmetry transformation laws

will be a linear combination of the lowest order equations of motion of these fields.
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gauge field equations of motion. We can now repeat our analysis on these left-over terms

with lower number of derivatives and show that they must be further reducible to terms

with lower number of derivatives. Repeating this procedure we can show that a term that

is invariant under the lowest order supersymmetry transformation of the gravitino alone,

must vanish as a consequence of lowest order supergravity field equations, and hence can

be removed by a field redefinition.

We now turn to the second possibility. This requires the action to contain higher

derivative terms of order λk and rank (m0 − 2). Since by assumption the action does not

contain any dangerous term of rank (m0 − 2) to order λk, the only possibility is to try to

generate these terms from the supersymmetry variation of a non-dangerous term of rank

(m0 − 2). In order to rule out this possibility we need to make one assumption: as a

consequence of unbroken supersymmetry the matter sector fields transform to terms which

contain at least a single power of the matter sector field, i.e. we have δsη ∼ O(η).8 In

this case terms quadratic and higher order in η transform to terms quadratic and higher

order in η and cannot cancel terms which are at most linear in η. This rules out the last

possibility. Thus we see that it is not possible to add higher derivative dangerous terms in

the action in a manner consistent with supersymmetry.

5. Dimensional reduction of five dimensional supergravity

In this section we shall consider five dimensional supergravity with curvature squared term

coupled to a set of vector multiplets [11] and dimensionally reduce this theory on S2 in

the presence of background magnetic flux through S2 to get a three dimensional (0,4)

supergravity with curvature squared term, coupled to a set of matter fields. We then apply

the procedure of section 2 and section 3 to truncate this to a pure supergravity theory with

gravitational Chern-Simons term, but no other higher derivative terms.

We shall concentrate our attention on the part of the action involving the bosonic fields

only. In the three dimensional theory this involves the metric and an SU(2) gauge field

that arises during the dimensional reduction of the five dimensional theory on S2. As we

have seen at the end of section 2, reducing the gauge field action to pure Chern-Simons

term is relatively simple; hence we shall focus on the part of the action involving the

metric. For this we can restrict the fields to the SU(2) invariant sector from the beginning.

Since the SU(2) R-symmetry of the three dimensional supergravity can be identified with

the rotational symmetry of the compact S2, this allows us to carry out the dimensional

reduction by restricting the field configurations to rotationally invariant form.9

The five dimensional N = 2 supergravity has a Weyl multiplet, a set of vector multi-

plets and a compensator hypermultiplet. After gauge fixing to Poincare supergravity, the

8This is of course true at the lowest order in λ but we shall assume that this property continues to hold

even after including possible higher derivative corrections to the supersymmetry transformation laws.
9One might worry about the extra terms which may be generated during the redefinition of the gauge

field that brings the gauge field action into the standard form; however one can easily argue that these

terms cannot affect the final form of the action involving the metric since setting all SU(2) non-invariant

fields, including the gauge fields, to zero provides a consistent truncation of the theory.
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bosonic fields of the theory include the metric gab, the two-form auxiliary field vab, a scalar

auxiliary field D, a certain number (nV ) of one-form gauge fields AIa with 1 ≤ I ≤ nV , and

an equal number of scalars M I [11]. Here a, b, . . . are five dimensional coordinate labels

and run from 0 to 4. We shall denote by F I = dAI the field strength associated with the

gauge field AI . The action for bosonic fields including curvature squared terms can be

written as

S =
1

4π2

∫
d5x

√
−g(5)[L0 + L1] (5.1)

where L0 is the lagrangian at two derivative order and L1 denotes the supersymmetric

completion of the curvature squared terms. The explicit forms of L0 and L1 are [11, 14]

L0 = − 2

(
1

4
D − 3

8
R− 1

2
v2

)
+N

(
1

2
D +

1

4
R+ 3v2

)
+ 2NIv

abF Iab

+NIJ

(
1

4
F IabF

Jab +
1

2
∂aM

I∂aMJ

)
+

1

24
e−1cIJKA

I
aF

J
bcF

K
de ǫ

abcde

L1 =
c2I
24

[
1

16
e−1ǫabcdeA

IaCbcfgCdefg +
1

8
M ICabcdCabcd +

1

12
M ID2 +

1

6
F IabvabD

− 1

3
M ICabcdv

abvcd − 1

2
F IabCabcdv

cd +
4

3
M I∇avbc∇avbc +

4

3
M I∇avbc∇bvca

+
8

3
M I

(
vab∇b∇cv

ac +
2

3
vacvcbR

b
a +

1

12
vabvabR

)
− 2

3
e−1M Iǫabcdev

abvcd∇fv
ef

+
2

3
e−1F Iabǫabcdev

cf∇fv
de + e−1F Iabǫabcdev

c
f∇dvef − 4

3
F Iabvacv

cdvdb

− 1

3
F Iabvabv

2 + 4M Ivabv
bcvcdv

da −M I(vabv
ab)2

]

(5.2)

where cIJK and c2I are parameters of the theory, e ≡ √−g, and

N =
1

6
cIJKM

IMJMK (5.3)

NI =
1

2
cIJKM

JMK (5.4)

NIJ = cIJKM
K , (5.5)

and Cabcd is the Weyl tensor defined as

Cabcd = Rabcd +
1

6
Rδ

[a
[c δ

b]
d] −

4

3
δ
[a
[cR

b]
d] . (5.6)

The parameters c2I appear in the coefficients of the higher derivative terms; thus we can

keep track of the derivative expansion by simply counting the power of c2I appearing in

the various terms.

We now carry out the dimensional reduction on S2 and focus on the sector invariant

under the SO(3) isometry group of S2. This can be done using the following ansatz for the
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five dimensional fields

ds2 = g(3)
µν (x)dxµdxν + χ2(x)dΩ2, 0 ≤ µ, ν ≤ 2

vθφ = V (x) sin θ

F Iθφ =
pI

2
sin θ, F Iµν = ∂µA

I
ν − ∂νA

I
µ ,

(5.7)

with the mixed components of F Iab and vab set to zero. Here xµ denote the three dimensional

coordinates. All the scalar fields can be arbitrary functions of x but are independent of

the coordinates (θ, φ) of S2. For the metric given in (5.7) the non-vanishing components

of the Riemann tensor are

Rµνσρ=R(3)
µνσρ, Riµjν=−χ−1 gij ∇µ∇νχ, Rijkl=χ

−2(gikgjl−gilgjk)
(
1−g(3)µν∂µχ∂νχ

)
,

0 ≤ µ, ν ≤ 2, i, j = θ, φ . (5.8)

Here R
(3)
µνρσ is the Riemann tensor and ∇µ is the covariant derivative computed using the

three dimensional metric g
(3)
µν . Using these relations we get the dimensionally reduced

action to be

S = − c2 · p
96π

∫
d3xΩ(3)(Γ)

+

∫
d3x

√
−g(3)

χ2

π

(
3

4
+

1

4
N +

c2 ·M
288

1

χ2
+
c2 ·M

72

V 2

χ4
− c2 · p

288

V

χ4

)
R(3)

+

∫
d3x

√
−g(3)

χ2

π
U(χ,M I , V, pI ,D)

+

∫
d3x

√
−g(3)

χ2

π

c2 ·M
192

(
8

3
R(3)
µνR

(3)µν − 5

6
R(3)2 +

16

3χ
R(3)
µν∇µ∇νχ− 4

3χ
R(3)∇2χ

)

+

∫
d3x

√
−g(3)L̂ (χ, vµν ,M

I , F Iµν , R
(3)
µν )

(5.9)

where

U(χ,M I , V, pI ,D) =
2

χ2

(
3

4
+

1

4
N

)
− 2

(
1

4
D − V 2

χ4

)
+N

(
1

2
D +

6V 2

χ4

)

+
2(N · p)V

χ4
+
NIJp

IpJ

8χ4
+
c2 ·M
96χ4

+
c2 ·M
288

D2 +
c2 · p
144

V D

χ4

− 5

36
(c2 ·M)

V 2

χ6
− c2 · p

48

V

χ6
+
c2 · p
36

V 3

χ8
+
c2 ·M

6

V 4

χ8

(5.10)

and L̂ (χ, vµν ,M
I , F Iµν , R

(3)
µν ) denotes terms which are at least quadratic in ∇µχ, vµν ,∇µM

I

and F Iµν . In eq. (5.9) all covariant derivatives are computed using the three dimensional

metric g
(3)
µν .

We first need to redefine our metric in such a manner that the coefficient of R(3) in

the second line of the action (5.9) can be absorbed into the metric. We define

g̃µν = ψ−2 g(3)
µν (5.11)
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where

ψ−1 =
χ2

π

(
3

4
+

1

4
N +

c2 ·M
288

1

χ2
+
c2 ·M

72

V 2

χ4
− c2 · p

288

V

χ4

)
(5.12)

After substituting (5.11) into the action (5.9), we get

S = − c2 · p
96π

∫
d3xΩ(3)(Γ̃)

+

∫
d3x

√
−g̃

[
R̃+ Z(χ,M I , V, pI ,D)

]

+

∫
d3x

√
−g̃ χ

2

πψ

c2 ·M
192

(
8

3
R̃µνR̃µν −

16

3ψ
R̃µν∇̃µ∇̃νψ +

4

3ψ
R̃∇̃2ψ − 5

6
R̃2

+
16

3χ
R̃µν∇̃µ∇̃νχ− 4

3χ
R̃∇̃2χ

)

+

∫
d3x

√
−g̃L̂ ′(χ, vµν ,M

I , F Iµν , R̃µν)

(5.13)

where

Z(χ,M I , V, pI ,D) = ψ3χ
2

π
U(χ,M I , V, pI ,D) (5.14)

and L̂′ denotes terms quadratic and higher order in the derivatives of scalar fields and other

tensor fields. For shorthand notation we denote all scalar fields by φ i.e.(χ,M I , V, pI ,D)≡
φ.

Following the general procedure given in section 2 we now define

Pµν = R̃µν −
1

2
g̃µν [R̃+ Λ0(φ)]

P = −1

2
R̃− 3

2
Λ0(φ) ,

(5.15)

where Λ0(φ) is a function to be determined later, and rewrite the action as

S = − c2 · p
96π

∫
d3xΩ(3)(Γ̃) +

∫
d3x

√
−g̃

[
R̃+ Z(φ)

]
+

∫
d3x

√
−g̃PµνKµν

+

∫
d3x

√
−g̃ χ

2

ψπ

c2 ·M
384

Λ2
0(φ)

+

∫
d3x

√
−g̃ L̃

(5.16)

where

Kµν =
χ2

ψπ

c2 ·M
192

[
8

3
Pµν −

2

3
g̃µνP +

2

3
g̃µνΛ0(φ) − 16

3ψ
∇̃µ∇̃νψ

+
8

3ψ
g̃µν∇̃2ψ +

16

3χ
∇̃µ∇̃νχ− 8

3χ
g̃µν∇̃2χ

]
,

(5.17)

and L̃ denotes terms quadratic and higher order in the derivatives of the scalar fields and

other tensor fields. We now choose Λ0(φ) to be the solution to the equation

Λ0(φ) = Z(φ) +
χ2

ψπ

c2 ·M
384

Λ0(φ)2 , (5.18)
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so that the action (5.16) may be expressed as

S = − c2 · p
96π

∫
d3xΩ(3)(Γ̃) +

∫
d3x

√
−g̃

[
R̃+ Λ0(φ)

]
+

∫
d3x

√
−g̃PµνKµν

+

∫
d3x

√
−g̃ L̃ .

(5.19)

In this case, as we mentioned earlier, the required field redefinition which will remove the

four derivative terms from the action (5.19) is

g̃µν → g̃µν +Kµν . (5.20)

To this order the scalar field potential −Λ(φ) is given by

Λ(φ) = Λ0(φ) = Z(φ) +
χ2

ψπ

c2 ·M
384

Z2(φ) + O(c22) . (5.21)

This process can now be repeated to remove the six and higher derivative terms from

the action, but we shall not go through the details of the analysis. Our interest is in finding

the exact expression for Λ(φ) since this is what controls the final truncated action. We

have already described the algotithm for finding Λ(φ) in section 3. The first step is to

compute F (l, φ) for the action (5.13) by evaluating the Lagrangian density (without the

Chern-Simons term) in the AdS3 background (3.2) with constant scalar fields and vanishing

tensor fields. We get

F (l, φ) = −6l + l3Z(φ) + 2a
1

l
(5.22)

where

a =
χ2

ψπ

c2 ·M
192

. (5.23)

The extremum of F (l, φ) with respect to l occurs at10

l2ext =
1

Z(φ)
+

1

Z(φ)

√
1 +

2a

3
Z(φ) . (5.24)

Hence Λ(φ) is given by

Λ(φ) =
32

F (lext, φ)2
=

32Z(φ)

W (φ)

(
2a

Z(φ)

W (φ)
+W (φ) − 6

)
−2

, W (φ) ≡ 1 +

√
1 +

2a

3
Z(φ) .

(5.25)

Before we proceed we note that to order c2I terms, i.e. order a term, eq. (5.25) reduces to

Λ(φ) = Z(φ) +
1

2
aZ(φ)2 + O(a2) . (5.26)

This agrees with the result (5.21) of the explicit calculation to this order.

10There is, in principle, another extremum at l2ext = (Z(φ))−1

“
1 −

p
1 + 2aZ(φ)/3

”
. This could in

principle describe a de Sitter solution. However since for this solution |lext| ∼ a, the radius is small and

there is no systematic derivative expansion.
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We now return to the full expression (5.25) for Λ(φ). Λ(φ) has an extremum at the

supersymmetric attractor point [13, 14]

χ =
pb

2

M I =
pI

pb

V = −3pb

8

D =
12

p2b2

(5.27)

where

p3 ≡ 1

6
cIJKp

IpJpK , b3 = 1 +
c2 · p
12p3

(5.28)

The value of Λ(φ) at it’s extremum is given by

Λ(φ0) =
32π2

p6

[
1 +

c2 · p
8p3

]
−2

(5.29)

Thus the final truncated theory, obtained by setting φ to its value at the extremum and

other matter fields to zero, is given by

S =

∫
d3x

√
−g̃ (R̃+ Λ(φ0)) −

c2 · p
96π

∫
d3xΩ(3)(Γ̃) . (5.30)

From this one can compute the central charges of the conformal field theory living on

boundary of AdS using standard formulæ (see e.g. [6]). The result is

cL = 24π

(√
2

Λ(φ0)
− c2 · p

96π

)
= 6p3 +

1

2
c2 · p

cR = 24π

(√
2

Λ(φ0)
+
c2 · p
96π

)
= 6p3 + c2 · p

(5.31)

These results agree with the predictions of [10, 12] from the requirement of (0,4) super-

symmetry, as well as the explicit calculations of [13 – 15] from the computation of the black

hole entropy.
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